
REPORT NO. GDC DDF66-007

AUTOMATIC MALFUNCTION ANALYSIS

BY DISCRETE NETWORK SIMULATION

APPENDIX C

PROGRAMMERS REFERENCE MANUAL

A,UTOMATIC MALFUNCTION ANALYSIS PROGRAMS

i (ACCESSION UMBER) -- - _'

(NASA CR OR _'MX OR _]_ NUMBER_--

GPO PRICE $

CFSTI PR!CE(S) $

GENERAL DYNAMICS

Convair Division

Hard copy (HC)_ ,_,,_

\\ -
ff 853 July 85

REPORT NO. GDC DDF66-007

AUTOMATIC MALFUNCTION ANALYSIS

BY DISCRETE NETWORK SIMULATION

APPENDIX C

PROGRAMMERS REFERENCE MANUAL

AUTOMATIC MALFUNCTION ANALYSIS PROGRAMS

OCTOBER 1966

Submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C. MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA
under

CONTRACT NASS- 20016

Prepared by

CONVAIR DIVISION OF GENERAL DYNAMICS
HUNTSVILLE, ALABAMA

TABLE OF CONTENTS

PART ONE"

AUTOMATIC MALFUNCTION ANALYSIS PROGRAM

Purpose 1

Restrictions 1

Storage 1

Timing 4

Method 5

Definitions 7

Failure Candidacy 8

Effective Value 8

Conditional and Unconditional Functions 8

Appendix A: Program Procedures and Flow Chetrts I0

Appendix B: Data Maps 39

Appendix C: AMA Output Tape Format 47

PART TWO

AUTOMATIC MALFUNCTION ANALYSIS EDITOR PROGRAM

Purpose 49
Restrictions 49

Storage 50

Use 52

Method 54

Appendix A: Program Procedures and Flow Charts 56

Appendix B: Data Maps and Storage 83

AUTOMATIC MALFUNCTIONANALYSIS PROGRAM(#3998)

AUTHOR

D. R. Diaddigo

General Dynamics/Convair

Scientific Programming and Analysis (595-0)

8 August 1966

PURPOSE

For each point of scan in the test procedure for the S-1C checkout system,

the DNS simulator produces a list of the component states for proper

functioning of the system. The Automatic Malfunction Analysis Program

then considers, on the assumption the modelled Discrete Inputs are

monitored, what modelled components failures in the system could cause

various DI's or combination of DI's to fail. It produces a list of effect -

cause relationships for the AMA-Editor Program (4012) which produces

the search tapes for the RCAl10.

RESTRICTIONS

(1) Program must run on 7090/94 with IBJOB systems capability

(2) In addition to system input and output, four additional magnetic

tape units are required.

STORAGE

Program/Sub-program Function

A. FORTRAN IV

1. Amaz 1. Driver

2. Analyz 2, (a) Determine variables that can affect

the value of equation

(b i Identify and flag conditionals

(c) Identify and flag reverse legs

3. Conclx

4. Condit

5. Data

6. Docasz

7. Enctex

8. Evaluz

9. Expcx

10. Fcasez

11. Fcfcz

12. Lctz

13. Negstx

14. Packz

15. Presox

16. Setcax

17. Setupz

.

.

.

6.

.

.

.

10.

11.

12.

13.

14.

15.

16.

Auxiliary conditional analysis routine -

solution of conditional string of variables

Auxiliary conditional analysis routine -

creation of conditional variable and branch

flags.

Block data - for tapes and storage limits

Main logical control over conditional and

unconditional procedure for each list

Auxiliary routine to carry effects into

higher common branch points.

Evaluation of equation according to list

input to verify consistency

Auxiliary conditional analysis routine -

rearrangement of conditional information

to aid in solution

Set up tables according to current list for

solution and tape information for editor

Output routine

(a) Effect - cause BCD print

(b) Effect - cause records for AMA

Editor Program

Au:dliary routine for page titling and
line control

Auxiliary analysis routine to check for

stopping on reverse leg processing

Auxiliary routine to control causes

sequencing through model equations

Main logic driver for solution of conditional
and creation of conditional solutions table

Initialization of flags and tables prior to

processing of list

17. Initial table read in and set up

B°

18. Soltrx

19. Subsol

IBMAP:

1. Atapez

2. Convrx

3. Edstat

4. Effrec

5. Equexp

6. Fnrins

7. Fnrret

8. Fnrzer

9. Fud

10. Konaux

11. Rtvdm

12. Simdat

13. Stgmnp

14. Tranl

15. Varaux

18. Storage of conditional solutions table

19. Substitution of conditional solution for

encountered conditional variable

14.

15.

1. Reading of Simulation List input tape

2. Binary to BCD translation

3. Packing of DI states for list for AMA
Editor

4. Reduction of encountered matrix for effects

record for AMA Editor

5. Expansion of equation bit coding for

processing

6. In,,Jertion of various analysis flags

7. Retrieval of various analysis flags

8. Deletion of various analysis flags

9. Identification of special magnetic tapes

10. Conditional Analysis flag creation and
retrieval

11. Auxiliary routines for creation of common

point levels and bit position identification

Retrieval of simulation input data flags

Insertion of effected DI bits in common

branch points matrix

Translation from variable code to three

letter code

Unpacking of complete variable status

flags

TIMING:

USE:

Ao Tapes

Fortran Logical,

2.5 minutes/list for S-1C model

To set up program for operation 4 magnetic

tapes and one specification card are required

System Function

- A(2)

8 A(1)

ii B(1)

9 B(2)

B. Specifications Card (all values integer)

Field Columns Function

1 1-6

2 7-12

3 13-18

4 19-24

Tape Function

Simulation Input

DT&C AMA tape

AMA Editor tape
Terminal variable matrix

Test Control

0 - Any reactions remaining terminates

job

1 - Any reactions remaining in list
terminates the list

2 - Any reactions remaining inconsis-

tencies are noted, action discontinues

on branch, but processing continues
in list

Output Option

0 - BCD print of effect, causes

and AMA Editor tapes

1 - BCD print only

2 - AMA Editor tape only

The first N variables are to be treated

as common branch points

The first M variables are the active

variables in the model

4

METHOD:

A.

B°

First procedure executed by program is set up of basic tables.

(1) The input tape from DT&C program (3843A) is read for the coded

equations table and the function reference table.

(2) The input from preprocessor - editor program (4019) is read and

the static common point level of each of the common branch points

is computed and inserted into the function reference table.

(3) Limits for:

a) Equation table

b) Function reference table,

c) Encountered common branch point matrix, and

d) Working area for analysis are defined

(4) Flags on the DIVs are set

Each list encountered from the simulator input tape institutes the

following procedure.

(1) All flags (state, encountered, processed, etc.) are cleared from
function reference table.

(2) The input state list is processed and the states are inserted into the

function reference table. The packed state list for the DI's are
transmitted to the AMA Editor.

(3) An initial pass over the function reference table is made to identify
conditional functions and find solutions for them. A section of the

working area is then assigned to hold the conditional function

solution and appropriate flags are set in the function reference table

to identify the conditional and to indicate whether it has a solution.

(4) For each common point level two passes are made over the function

reference table {common branch point section) and for each common

branch at this level the analysis procedure is initiated.

a) 1. In the first pass the actual common branch relationship is
determined.

2. In the second pass the failure components are investigated.

b) The first variable encountered is the common branch itself and

the terminal DI's that it will affect are either the DI itself, if

c)

the process is at level one, or a combination of DI's, stored by

bits in the Encountered Common Branch Matrix, if the process is
at a higher level.

The equation for the variables under consideration is expanded

producing a set of variables, whose equations will also be expanded.

The set of variables consists o[those in the equation whose

assumption of the opposite value than the one they hold will change

the value of the equation in which they occur. Each variable is

investigated for following conditions.

1. Common branch level

a) If higher branch level, the processing of the variable is

stopped, until its level is processed, and it is flagged

as encountered with the terminals through which it has

been encountered inserted into its position in the
Encountered Matrix.

b) If of the same level, the variable is investigated further.

2. Negation Stoppage

If the negation flag is set the variable is the reverse leg

opposite to the direction of Analysis, whose failure would be

a contradiction. The variable is then deleted from the set.

3. Failure Candidacy

o

Dependent on the value of the variable the variable is inserted
into the causes list.

Conditional - if the variable is identified as a conditional,

its solution if it exists is retrieved from the solution list and

added to the set, and the variable is deleted from the set.

5. Initiator

If the variable has no further expansion, it is deleted from the

set and processing continues with the next variable in the set.

6. Transaction Variable

If the variable has not been deleted from the set under conditions

(1), (2), (4) or (5) its equation is expanded and new variables

are added to the list if they can contribute to failure. The

variable is then deleted from the set.

6

At the endof eachstep the set of variables is repacked so
that the next variable to be investigated moves to the top of
the set.

When the set is depletedfor the initial variable, processing
continues with the next variable at the samebranch level,
after transmitting effect and causes to the AMA Editor.

Whenvariables at this branch level are completed, the program
processes the next branch level and uponcompletion of all
branch levels, the list %sconsidered complete and it proceeds
to the next case.

d) The common branch points processcd arc those only actually

encountered through lower level branches (c) (1) above. A flag in

the function reference table is used for this, and to prevent re-

processing variables encountered through various branches, a has

been processed flag is also set. (In the prepass, a separate flag

is used for the same purpose).

DE FINITIONS:

. Common Point Level - The preprocessor editor program (4019) in a section

of its processing defines the relationship between terminals (Discrete

Inputs) and the components in the network. The number of terminals

connected to the component is the common point level of the component. It

is not necessary to assign common point levels to non-branch variables,

since they will have the same level as the branch through which they are
encountered.

t Common Branch Point (Static) - If a variable has a direct effect on

variables of lower common point level, then it is a common branch point.

The analysis loops are based on static branch point level.

. Common Branch Point (Dynamic) - In certain model states, a static common

branch can become a non-branch point. The case in which this occurs is

the modeling for the forward-reverse legs in the system. Dependent

upon the current flow direction, the nodes connected by this type leg,

can, 1) both be considered common branches with the same effect, 2)

both common branches with independent effects, or 3) one node becomes

the common branch and the second determines only the connectivity with the

rest of the circuit. The criterion for determining the actual common branch

status is whether the node is encountered independently of its partner.

The prepass, mentioned in the method, is used to determine this and the

true effect on the system for these type eases.

FAILURE CANDIDACY

When the value of an equation is zero or one, then only those variables in the
equation whose effective value is zero or one can cause failure. But to be

entered into the causes list, the component itself must be capable of failure

in that state, otherwise it can be used only to establish connectivity.

As an example:

A leg carries power between nodes. If its value is one (current is passing
through), it can fail and cut off the flow of current of its own accord. But

if no current is passing through then it can fail, assuming power, only if

other component, such as a contact, fails in such a way as to permit

current through. Thus, in the first instance it will be listed as a possible

source of failure, and in the second, it will be used only to lead back to the
contact which is the possible source of failure.

EFFECTIVE VALUE

The state of a component may be opposite its effect on the system at a

particular time. This is expressed by usage of the /operator. Thus:

A=B* /C where value of C is 0, indicates that its effective value is

1, and C is considered for failure under the conditions that

it is 1.

CONDITIONAL AND UNCONDITIONAL FUNCTIONS

If the change of state of individual components in an equation changes the value

of the equation then the equation is unconditional, and these variables are

entered directly into the set of variables to be processed further.

Examples:

(a) A =B+ C +D where the values of A, B, C, D, are zero

Either B, C or D assuming the value of 1 can cause the value of

A to become 1, giving three unconditional solutions to the problem.

(b) A = B * C * D where all values are 1. The resultant solutions are

as above, B, C and D are the unconditional solutions.

If however, the change of value of an equation depends upon the

simultaneous change of state of two or more variables, then the function

is conditional. There is a solution to the equation only on the condition

that there is a set of variables, anyone of which can cause the simultaneous

8

failure of the conditional with its failure.

Examples:

(c) A :B* C*D

(d) A=B+C*D

A function may have

Example:

(e) A=B+C*D

where "all values are zero. If B, C and D are in turn the
function of the same variable E whosechangeof state
changestheir states then E is the solution. Otherwise
there is nosolution. There of course may be several.

where the states of all variables are 1. Then the
solution to the problem consists of finding those common
variables that can cause either B and C to fail or B and
D to fail.

bothunconditional and conditional solutions.

where all values are 0. The solutions are B and the
set of variables that causeboth C and D to assume the
values of 1simultaneously.

The program treats the aboveas conditional with B as one of the solutions.

9

APPENDIX A: PROGRAMPROCEDURESAND FLOW CHARTS

A°

S.

References to data items are made to Appendix B outliningdata storage and

labeled commons.

Subroutines are discussed in alphabetical order with an explanation of their

options and techniques and their interrelationship with other programs through
labeled commons.

C. Fortran Routines

1. AMAZ - Main driver

a) Set up tables

b) Initialize tables for list

c) Read list and set states

d) If last list exit

e) Perform analysis

f) Continue from b

2. ANALYZ

CALL ANALYZ (NCPL, ILL)

Performs analysis on variable (JFUNC) specified in /BRHPRS/

a. Validates equation value. If value is inconsistent, a message is

printed and action taken in accordance with input specification.

b* Examines each variable on left side of equation for possible malfunction

dependent on value of equation. Possible malfunctions are placed in list

in /STREF/under control of NAMLIX of /BRHPRS/for further processing.

C. If function is conditional, the conditional variables are flagged with

their branch numbers, NNCON of /CONPRS/indicates position and

KONDF is the flag.

d. Negated variables are flagged in function reference table and their

identifications are placed in upper section of/STREF/under control

10

.

of INEG of /BRHPRS/ for flag clearance at end of common branch

processing.

C. Common point levels are assigned to variables not placed in the common

branch point category during the conditional presolution process by using

the common branch point's level through which they were encountered.

This is to prevent the attachment of failure causes to the improper level

when solution substitution takes place.

f. Analysis contains another error message to indicate if a parenthesis,

which is not acceptable in this version of AMA, has occurred in an

equation. The run terminates with this error message.

Two dummy variables in calling sequence.

NCPL - 1, routine has been called during conditional presolution

(PRESOL). Options taken are to carry down common point

levels and ignore inconsistency message.

2_ routine has been called from unconditional analysis

(DOCASE). Options taken are check for inconsistency and
bypass carrying down common point level.

ILL - routine sets ILL to 1, if inconsistency is encountered.

Calling program decides on action if control is returned.

CONCBX

CALL CONCBR (MST)

Dummy variable MST is set to 1 if all branches of a conditional have

terminated in solutions. Otherwise it is set to zero.

Procedure: (1) The conditional identification of the latest variable

added to the conditional list

(2) All variables having this identification are separated

according to their branch identifications.

(3) The expansion of the conditional list is then solved.

Any variable assigned to all branches is a solution. One

reference is retained and all others deleted. The variable

is not processed further for this conditional.

Routine used only during PRESOL.

11

4. CONDIX

CALL CONDIT

i. Sets conditional id KONIDol /CONPRS/to I for conditional
function

2. Carries down the conditional id into each variable assocaited with

the conditional function, retaining the branch number.

3. If a conditional has independent term (e.g., A = B * C + D * E,

all values zero, there are two terms that can be solved independ-

ently for solution) KONID is changed for each.

4. The number of branches is determined, (for zero's conditional, the

number of variables in each term are counted, for one's conditional,

the highest branch number is the number of branches), and the flag
word consisting of KONID, NBRAN, and JFUNC is created for the

conditional function.

5. NNCON is positioned, past the flag words, for the first variable in

the conditional for further processing.

5. DATA

Block data subroutine

Presents

1. MTITLE to blanks

2. IEND to 18500 (current limit of ISTORE)
3. Tape assingments /IODEFS/

6. DOCASZ

CALL DOCASE

Executes procedures B 3) and B 4) described under Method.

a. Working storage in/STREF/is defined by position counter NAMLIS.

b. Common point level of operation is defined by ICCPL.

c. The variable under investigation is JFUNC, always a position within

/STREF/. The variable status is expanded from the function reference

table into /VARSTS/.

12

.

o

.

d. JFTERM defines the common branch point under analysis. JFTERM
is always the variable code number.

e. NAMLIX is a position within/STREF/used to define the upper limit

of possible variable failure associated with the common branch.

f. LSPEC (2) is used to control the output of the effect-causes results.

g. INEG is used to define the beginning position in /STREF/where the

negated variable encountered has been stored. (Table goes to IEND).

ENCTEX

CALL ENCTER

If during the processing of a common branch point, a higher common branch

is encountered as a failure possibility this routine is entered to transfer

terminal effect from the current common branch to the higher encountered
common branch.

a. JFTERM defines the branch point which encountered the higher branch.

b. JFUNC defines the branch encountered.

c. Transfer of terminal effects are made from row assigned to JFTERM

in encountered Matrix to row assigned to variable defined by JFUNC.

d. If JFTERM is one of the terminals (_NTERM) its bit configuration is
computed and transferred to JFUNC's row.

e. JFUNC is flagged as encountered for processing when DOCASE driver
reaches its common branch level.

EVALUZ

CALL EVALU

From /EQSKEL/which contains the expansion of the equation with symbol or

variable code per word, EVALU retrieves the current variable values and

computes the value of the equation storing it into EQUVAL.

EXPCX

CALL EXPCON

Expansion of conditional function variable set for solution by CONCBR routine.

13

10.

a. Limits of search are defined by NNCON and NAMLIX.

b. Conditional function searched for and number of branches is defined by
ID and NBKON of/CONSOL/.

c. Expansion of the conditional goes into /STREF/ starting at NAMLIX + 1.

d. If a variable occurs more than once in the same branch, the later
occurrences are erased.

e. The beginning and end positions of the solution Matrix are set into
IN and NAL of/CONSOL/.

FCASEZ

CALL FCASE (NONE) - Read list and set function reference table for

processing of case.

a. Simulation of data is read into IBIOT of /RW/

b. Tests on type of control card (* in first position of first word) against

internal data statement for which following actions are taken

1) *TITLE - title (if first) is transmitted to /MTITLE/for run

titling and to AMA Editor. All other titles are ignored.

2) *$$$$$ - transmit 'EOFEOF' to AMA Editor and set NONE to 0 to

signal termination of job to driver.

3) *LIST - set flag so that incoming data is treated as variable state

data. Transmitted to AMA Editor after block, step, sub-step
numbers are converted.

4) *END LIST - creation of profile record for AMA Editor. Erasure

of flag for state data.

5) *ACTIONS - set flag for action data.

6) *END ACTIONS - determine if reactions remain and take action as

specified by LSPEC (1).

c. List data - if variable occurs as 1 in list set value bit of function

reference table to 1 for the variable.

d. Action data - determine if data is reaction or input and maintain counts.

14

..-"

11. FCFCBZ

CALL FCFCB(INAME, IKIND)

INAME fi 0 store cause INAME into KCFC buffer and increase ICFCC.

INAME = 0 output current buffer under LSPEC {2} option. If option

includes print translate buffers to 3 - letter codes before

printing.

IKIND = 0 output EFFECT record.

= 1 output CAUSES record.

12. LCTZ

CALL LCT {LENT, LADD, LFA) - Print control

LENT = 1 Increase line count by LADD, if it exceeds maximum

{currently 50), reset and print new page title, title only

if LFA = 1, subtitle for variable identification if LFA = 2

Set line count to 0

Set page count and line count = 0

Same as 3

=2

==3

:4

13. NE GSTX

CALL NEGSTP (NFLAG, IVAR)

a. Expand equation for IVAR into /STRE F/ starting at NAMLIX + 1.

b. If IVAR contains the negation of the JFUNC variable code, set
NFLAG = 1.

14. PACKZ

CALL PACKIT

In section of ISTORE of /STRE F/ defined by position limiters NAMLIS and

NAMLIX, the data is repacked to eliminate cells that have been zeroed out,
giving a new value to NAMLIX.

15

15. PRESOL

CALL PRESOL- Executes section described in B 3) under Method.

a. The storage for conditional solutions, ICONSof/CONCXX/is set
to start at IFREE of /STREF/.

b. The working storage in /STREF/from IFREE to IEND is divided into

two sections.

1. 1/3 to store conditional solutions, and

2. last 2/3's for variable lists, negation data, equation

and conditional branch expansion.

c. LEVEL is set to control definition of conditional branches for

ANALYZ.

d. KONR to indicate conditional identification.

e. NNCON, NAMLLX to define limits of working area where variable

set for a particular conditional is stored.

f. ICX - holds position of conditional identification, in variable list

of conditional currently under solution.

g. Parameters in/VARSTS/, /BRHPRS/, /REFTAB/are used in same

manner as in DOCASE.

h. ICTSX of/CONCXX/is set to upper limit of conditional solution

storage and NAMLIS for DOCASE will start in the position afterwards.

16. SETCAX

CALL SETCAS

a. Before entry into FCASE, the function reference table is cleared of

all flags with exception of encountered flags on terminals, state value

on inactive variables, and all common point levels and equation

references.

b. The encountered branch point Matrix area is cleared.

17. SETUPZ

CALL SETUP

Procedure outlined under A in Method is exectued.

16

a. All tape input is into KCFC of/EFFCAU/.

b. Equation table is read into ISTOREof /STREF/ and its position

limits IEQT, IEQX are set into /EQUTAB/.

c. Specification card is placed in LSPEC of /RW/.

d. Function reference table is read and /REFTAB/is set for limits

IFNRT, IFNRX.

e. Terminal variable Matrix is read and common level established for

common branch points. Maximum common level, ICPMAX, is
established.

f. Limit positions are set for terminals (IFTER), common branch

points (IFCBT) and active variables (IFNAV) as well as the

number of terminals NTERM for /REFTAB/.

g. Function reference table for each variable is expanded into
/VARSTS/and printed.

h. Limit positions ITVDM, ITVDX and row (ITVRW) and column

(inwords, ITVCL) are set in /TVMTAB/for the encountered

common branch point Matrix.

i. Encountered flags are set for the terminals.

j. IFREE of/STREF/is set to indicate the beginning of working
storage.

18. SOLTRX

CALL SOLTRF

a. -JFUNC is stored to indicate the variable the conditional solution

pertains to.

b. The solution stored between NNCON and NAMLIX is transferred.

c. ICTSX is repositioned to indicate the limit of conditional solution

storage.

19. SUBSOX

CALL SUBSOL

a. JFUNC is the solution to be retrieved.

17

D.

b. Search is conducted between limits ICONS and ICTSX.

e. Solution is transferred into positions starting with NAMLIX + 1
and NAMLIX is reset.

Map Routines

1. ATAPE Z

a. CALL BOPEN - open simulator input tape.

b. CALL BOTRED - read simulator record into IBIOT of/RW/.

If tape is redundant, message is printed and job terminated.

2. CONVRX

I = CONVRT (A)

The binary number A is converted to BCD image with leading blanks.

3. EDSTAT

CALL EDSTAT (N)

Operating on function reference table between limits IFNRT and IFTER

the list profile on the terminals is created for the AMA Editor into

KCFC of/EFFCAU/.

N is set to the number of words in profile.

4. EFFREC

CALL EFFREC (A)

For the row of'the encountered branch point Matrix starting at A, determine

which of the NTERM terminals are effected by this common branch. Trans-

late the bit s into their implied variable code position and store in KCFC

and the final count into ICFCC of/EFFCAU/.

5. EQUEXP

CALL EQUEXP (A, N, B)

a. Expands equation whose position reference is A into array B and set

total number of operators and variables into N.

18

Q

o

o

b. Each operator is flagged as negative with value between 1 and 7.

c. Each variable code has positive sign.

FNRINS

The argument A for all entries indicates a position for the function reference

table within/STREF/. 7090 word is S, 1-35.

a. CALL CPLINS (A) Insert comraon point level from VARCPL of

/VARSTS/into bits (6-17).

b. CALL HBEINS (A) Set has been encountered position, bit 5, to 1.

c. CALL HBPINS (A) Set has been processed position, bit 2, to i.

d. CALL NEGINS (A) Set negation flag, bit 18, to i.

e. CALL LEVINS (A) Set conditional branch, or level, bits 3-15 to value

of LEVEL. This insertion is not into the function

reference table.

f. CALL HBCINS (A) Set has been checked flag, bit 19, to 1.

g. CALL HBKINS (A) Set conditional identification, bit 20, to i.

h. CALL KSLINS (A) Set conditional solution flag, bit 1, to i.

FNRRET

Argucment A is position within ISTORE

a. I - CPLRET (A) Retrieve common point level as integer B35.

b. I = VALRET (A) Retrieve variable value as integer B35.

c. I = EQURET (A) Retrieve equation reference, bits 21-35, as an

index.

d. I : VARRET (A) Retrieve variable code, bits 21-35, as an index.

FNRZER

Argucment A is position in ISTORE

a. CALL ZRPV (A) Zero value, processed, conditionality,

negation, checked flags (Bit S, 1, 2, 18-20).

19

11.

12.

b. CALL ZREPV (A)

c. CALL ZREPV (A)

d. CALL LEVZER (A)

c. CALL NEGZER (A)

Zero above flags including encountered (Bits S,

1, 2, 5, 18-20).

Zero all flags except value (Bits l, 2, 5, 18-20).

Zero conditionality branch (Bits 3-15).

Zero negative flag (Bit 18).

FUD - tape assignments cards.

KONAUX

Argument A is a position within ISTORE.

a. I = KOBRET (A) Retrieve conditional branch(es) number,
bits 1-10.

b. CALL KONDEF (A) Expand conditional information into,

NBRAN - branch(es),

KONID - conditional id,

KONR - associated variable.

c. I = JIDRET (A) Conditional level, bits 3-17, retrieval.

d. CALL KONINS (A) Create conditional process word from NBRAN

and KONID assuming variable is already in A.

RTVDM

a. I = RTVDM (N)

b. J = IBCOV (N, L)

SIMDAT

a. I = SCtIRET (A)

b. I = IXDRET (A)

c. I = ITYRET (A)

translated N into a word and bit position
of KCFC and retrieves the bit.

translated N into word position J (position start

at 0) and store bit configuration into L.

Retrieve first BCD character of IBIOT (1) of

/RW/ and insert leading zeroes.

Retrieve address of IBIOT (2) (Index code).

Retrieve data type Bits 3-17 from IBIOT (2).

2O

13. STGMNP

a. CALL MERGI (WORD,A) - Merge WORDinto position A of ISTORE.

b. CALL MERSTG(POS1, POS2, N) - Merge N words starting at
Pos I of ISTOREinto
corresponding number of
words starting at POS2.

14. TRANL

CALL TRANS(N, M)

Translate an index codeN into a 3-letter alpha code with trailing
blanks. The translated name is stored in M.

15. VARAUX

CALL VARDEF (A)

Unpackthe function reference word in position A of ISTOREinto
/VARSTS/and CONPRS/.

21

ANAI

I Dev,

i

Eval

nd

r

_te

Yes

conditional

flags

1
negation, l,
and term

control flags

Y

I

r

incons stency

Equation

[p teg I

I

FI_ [inconsistent

VAIv_e

ion Yes _ Yes

TL I°

Figure A-1. ANALYZ (1)

22

)

No

Set

i

i
1' Set_ I

fr o_nvatrr°ilble 1

value and [

[over._]_ code l

+ operator

(equation

[,_,_=01]

IX=I

I Var*_*oI
(equation [

va_ue : o_ l
P

Zero

conditional

flag

I.
Yes..

ire Erase I_e_ negation
te . .

indicator

N_n: ;ion

No

r

" S_ 7e I //-LEVINS-\varJ ble I / _ \
in f_ lure _--_xconditLonalityl

li: illty

lncz _m_]

r

_ Yes

iNo

I°o::

I_L,, (:

6

o_I

No

o, n s_'
_ t'_r °1'

IX =4, 12

I/operator[

I (equation

[value 0 or 1)

J _tl _l_:e]

r

for |

tar anc_

IX = 5, 6, 13, 14

,.,02 1
rator

(equal [on

value _, i)

Iw, lerl er

rues _

Figure A-2. ANALYZ (2)

23

IX=8

I operator

zero's

analysis

Yes J Increase

conditional |
nm counter

vZ_les,

T

IX=9

l Variable 1

(equation

value = 1)

I (z) Void_r_

I
tlo_

negation

i_._ tiesi

IX =II

(eqtm on

value : 1)

Increaan

Ld conditional

counter and
level

_ ,
I

_-Q

Figure A-3. ANALYZ (3)

24

IX = 16

• Operator I

(equation

I value = 1) [

Yes

one Yes

I

Yes

value

IX = 2, 10

ator 1

on

=1, O)

* Ope

l (equa

valm

IX='/, 15

ator]

on

=1, O)

Figure A-4. ANALYZ (4)

25

CONCBR

Conditional

solution

process

1
Set complete [

solution

flag = 0

I

Search [

for condRional [

[flag word

1
I

Set number]

of branches I

for expansion I

I

o _
Obtain [

variable from

expansion

L. solu,

Yes

I'
Clear

conditional
flags on

first occurence

all other

occurences

from list

Yes corn

Figure A-5. CONCBX

26

co_ut]
storage of [

conditional [

variables |

Set

conditional

idto 1

begin of

search

I position [

bra__n_hes

I
I_Joh I

Yea

bra :

nur_ er [

Ge

! iD

p

_eaD

Set]

-JFUNC I

for flag [

No

]_ pro_

Figure A-6. CONDIX

27

AMA for

a list

_rt _orkinl_

storage at end_

of solution|

st°ia_ /

common point

i level loop to I

I _rmtnll nnLl

Begin

common level

processing I

_]o

_r

rune ;ton

refe] ence

common

point levol

L

_o

eve

Yes

T
Figure A-7. DOCASE (1)

28

()

_em

i_ : code l

i

I'M_ hl

Yes

I Re
v_

fro:

eve

ble

;lst

_o

No

Figure A-8. DOCASE (2)

29

Yes

-- NO

h _ ,
Set]

conditional

solution = 0

Yes

gem

i

Set

conditional

solut/onflag = i

I

_es

var_ _

[o

No

eandi acy

No

Figure A-9. DOCASE (3)

3O

®

No

Yo8

t

Transfer]

termimd

to effectJ

Izlffer

Yem

YOl

1
level

_o

We|

Figure A-10. DOCASE (4)

31

Re_

Yes

Yes

Figure A-11. DOCASE (5)

32

End-of-data

termination

flag = 0

Bet

fla{

Q

Identtfy

Control

No

_ Print Control
Card

I=4

I
I'

Trangf ,r title I

d3

I

$

i,=5

Zero input]

& re =tlon

cotmters

Figure A-12. FCASE (1)

33

_°

=6

m8

YeB

l app,_
dal

Write Itape

1
Conve_ I

bloek-I_ep
sub-set

lor print

= 1, 2, 4, 6, 7

ir

Data

=3

I

Figure A-13. FCASE (2)

34

®

eo_lJ omd

Ioo::o_I
solul)11 & |
worl trea /_n! .ha

1'

Inltll [ize [negJ ;ion

L.._| and 1st

go

No

qtonal

ANA _Y._._ZZ

)rm

[o

Yet;

p

| condl

l llst'Lag s }

P

Figure A-14. PRESOL (1)

35

C

sp_

e_

condit

list col
, for fl_

'es

or

Iter

p

Io_al /

y
1 Setfor]

___processing

\ code from '

• _o

VA DEF

',222/

Va_ _ Erase

_ _ wri_lofrom list

go

(es

Yes

Figure A-15. PRESOL (2)

36

Set position

1 for I

transfer

 .s

No

o

_I KOI;DEF I

__condit ona;.

_BR

npt

r

No

r

Reposition 'tpointer

o

Figure A-16. PRESOL (3)

37

C

pNo I

coC ate

spa r for L

tonal

zs

lP

/Flag J

1'

I sete_. I
for processl_l

Repack I

solution in

conditional

No

Repositlon

pointer
back to

original

Figure A-17. PRESOL(4)

38

APPENDIX B: DATA MAPS

I. DATA WORD PACKED FORMATS

A. Equation Packing

Variable names are reduced to 15 bit binary codes, representing

their index codes, and operator to 6 bit binary codes by the DT&C

program (3843A). Each equation's packed format begins a new word

with the packing left justified in all words. The codes which

represent the operator codes, used by the AMA program are:

70 - * , and operator

71 - + , or operator

72 - / , not operator

76 - , equation termination

All equations are packed in one table in ISTORE. No identification

separates the equations. Reference is made to the table by way of

the first address, through the function reference table, which gives

the left-hand member of the equation. Termination of an equation's

processing occurs when the processing program encounters the 76 code.

B. Function Reference Data Item

All thirty-six bits of the 7090 word are used for each entry in the

table. Significance of the bits are:

S - value of variable (- for 1, + for 0)

1 - if 1, the function is conditional and has a solution

if 0, the function is conditional, it has no solution

2 - if 1, the variable has been processed on previous

encounterance at a particular branch level

39

Co

3, 4 - Failure candidacy

0 - not a failure candidate

1 - failure candidate in one's state

2 - failure cnadidate in zero's state

3 - failure candidate in either state

5 - if 1, variable has been encountered through lower

common point level

6-17 - variable's common point level

18 - if 1, the variable has been encountered as a negation

of an equation's analysis

19 - if 1, same function of bit 2, but used on prepass

20 - if 1, function is conditional

21-35 - position within the equation table where this variable's

equation occurs. If 0, the variable is an initiator.

Encountered Common Branch Point Matrix

1. Position

if N is the number of terminals, the number of words assigned in

this table to a common branch is I = (M - N) * I + 1.

2. Bit Significance

Since the DI's are set up to be the first variables in system

definition, they then will have the first index code assignment.

Once the position for a common branch has been determined

the terminals which it affects can be determined by the implied

position of its corresponding bit. Thus, the sign position

indicates the DI whose variable index code is 1, bit 35

represents the DI whose variable index code is 36, bit 4 of word

2 indicates the DI whose variable index code is 41, etc.

4O

II.

Do Conditional Processing Variable Format

1. Function

S

1-10 -

11-20 -

21-35 -

S

1-10 -

11-20 -

21-35 -

3. Solution

position is set to 1

number of branches in function

identification of conditional

conditional variable, position within function reference

2. Branch member

branch to which variable belongs

identification of conditional to which variable belongs

variable, position within function reference

Before entrance into solution storage, a solution variable

consists only of bits 21-35 containing the variable position

code. All others are zero.

COMMONS

A. Major common is /STREF/which contains the table storage

1. /STREF/IFREE, IEND, ISTORE (18500)

IFREE - position of first word beyond permanent storage

IEND - contains the value of the maximum limit of ISTORE,

currently 18500

ISTORE - table and work area

2. Configuration of ISTORE

a. Permanent storage

41

bo

1) Equation table

ISTORE (IEQT) to ISTORE (lEQ X)(IEQT = 1)

2) Function reference table

ISTORE (IFNRT) to ISTORE (IFNRX) (IFNRT = IEQX + 1)

3) Encountered common branch matrix

ISTORE (ITVDM) to ISTORE (ITVDMX) (ITVDM = IFNRX + 1)

Case storage

1) Conditional solutions

ISTORE (ICONS) to ISTORE (ICTSX) (ICONS = ITVDMX + 1)

2) Working area

a. ISTORE (NAMLIS) to ISTORE (IEND)

1) NAMLIS for pre-solution of conditionals is

(IEND - IFREE) * 2/3

2) for unconditional, ICTSX + 1

b. Negation variables

ISTORE (INEG) to ISTORE (lEND)

INEG is incremented backwards from IEND

c. Negation test variable expansion, conditional

solution rearrangement

ISTORE (NAMLIX + 1) to ISTORE (lEND)

d. Variable failure, conditionalbranches list

ISTORE (NAMLIS) to ISTORE (NAMLIX)

e. Conditional solution before transfer, conditional

listprocessing

ISTORE (NNCON) to ISTORE (NAMLIX)

42

B° Other Commons

1. Unconditional branch processing

/BRHPRS/JFTERM

JFUNC

NAMLIS

NAMLIX

INEG

- index code of current common branch

- variable position code of current variable

- start of variable failure or conditional

branches list

- end of variable failures list, conditional

branches list, conditional solutions list

- first address of list of negated variables

2. Conditional branch processing

/CONPRS/KONID

KONDF

KONR

LE V E L

NNCON

NBRAN

- conditional identification

- conditional solution flag, conditional

item counter

- conditional identifier,conditional

function code

- conditional branch identifier in initial

equation processing

- conditional list processing position value

- branch(es) identifier for coded conditional
elements

3. Equation unpacking

/EQSKE L/EQUVAL - equation value

NSKEL - number of items in equation unpacked form

EQSKEL(400) - unpacked equation

a) index is set positive

43

4. Equation table control

/EQUTAB/IEQT

mQX

b) operator is set negative

-I,*

-2,+

-3,/

-7,

- first position in ISTORE

- last position in ISTORE

5. Function reference table control

/REFTAB/NTERM- number of DI's in model

IFNRT -

IFNRX -

IFTER -

IFCBT -

IFNAV -

6. Variable definition

/VARSTS/VARVAL

VARHBP

VARHBE

VARCAD

VARCPL

VAREQF

first position in ISTORE

last position in ISTORE

last position of terminal references in
ISTORE

last position of common branch point
reference in ISTORE

last position of active variable
references in ISTORE

- value

- has been processed flag

- has been encountered flag

- failure candidacy code

- common point level

- equation reference

44

1

o

°

10.

VARNEG

VARHBC

VARHBK

Conditional solving

/CONSOL/ID

IN

NAL

NBKON -

Common level definition

/CPLPRS/ICPMAX -

ICCPL -

Tape definition

/IODE FS/KAMAT S

KTVDM

KAMAMC -

Title

/MTIT LE/MTITLE (12)

- negation flag

- prepass has been processed flag

- conditional function flag

conditional identification on which

the solution will be attempted

beginning cell of expansion for

solution

last cell of expansion for solution

number of branches in conditional

maximum common point level

current common point level of

processing

input from DT&C

input from preprocessor editor

output to AMA Editor

- Title from simulator, data set

initially to blanks

45

11.

12.

/TVMTAII/ITVDM

ITVDMX

ITVRW

Encountered branch matrix

- first position in ISTORE

- last position in ISTORE

- number of rows in matrix (number

of common branches)

ITVCL - number of words to express the
terminal effects for each common

branch

Effect - causes

/EFFCAU/ICFCC -

KCFC(250) -

number of words in buffer

(a) index codes for either causes

or effects

(b) three-letter codes for either
causes or effects

13. Simulator input, specification card

/RW/IBIOT(20)

LSPEC (4)

14. Conditional solutions

/CONCXX/ICONS -

ICTSX -

- simulator input buffer

- input card specifications

first storage position in ISTORE

last position in ISTORE

46

APPENDIX C: AMA OUTPUT TAPE FORMAT

The AMA produces oneoutput tape which serves as input to the AMA Editor
program.

Format is as [ollows.

A. 1. First word of each record is the number of words in the record

2. Secondword is the BCD identification of the record

B. First record on tape is the title

Word 1: 14

Word 2: *TITLE

Words 3-15: Title

C. Each case of the run has following format

1. Word 1: 14

Word 2: *LIST

Word 9: • Block-step substep

2. Word 1: N

Word 2: *STATE

Words 3-N + 1: Bit pattern showing the on/off states of DI's

47

Do

3. Effect-causes records in sets of two records a piece

Effect:

Word 1: N

Word 2: EFFECT

Words 3-N + 1: index codes of terminal effects

Causes:

Word 1: N

Word 2: CAUSES

Words 3-N + 1: index codes of causes

These records are repeated until r_ext *LIST, or end of tape.

Tape may be multiple reel. Each end-of-file causes the call for a new

tape. The final tape has the format:

Word 1: 14

Word 2: EOFEOF

48

PART TWO

N67 17378

AUTOMATIC MALFUNCTION ANALYSIS EDITOR PROGRAM

AUTOMATIC MALFUNCTION ANALYSIS EDITOR PROGRAM

AUTHOR

D. R. Diaddigo

General Dynamics/Convair

Scientific Programming and Analysis
31 March 1966

PURPOSE

The results of automatic malfunction analysis are stored on magnetic tape

in separate and intermixed records of failure effects (restricted to DI's)

and possible failure causes. Effects and causes are specified using the
Discrete Network Simulator internal index codes. The function of the

edit and tape generator is to:

1) Correlate internal codes with DI number to produce search keys,

2) Perform the translation between the internal codes and the

original model names to produce the lists of failure causes,

3) Reorder the data based on search keys for direct search by a

RCA 110 program and create the codes for correlating the effects
with the cause lists, and

4) Produce tapes for RCA ll0 containing the search keys, correlation

codes, failure causes lists, and a hard copy print of the failure
causes list.

RESTRICTIONS

1) Program must run on 7090 with IBJOB systems capability;

2) In addition to system input and output units, five magnetic tape

units for special input/output are required.

49

STORAGE

Program/Subprogram Name

1) AMAOUT

2) CAUPAX

CAUPAK

CAUUPK

3) CONVRT

4) DIAUX

DITRAN

DIPART, DISE P

5) DINT

6) DION

7) DNSINP

8) DTCINP

9) EFFCOM

10) EFFDET

11) EFFMUL

5O

Function

Driver

Internal packing for failure causes

Internal unpacking

Binary to BCD conversion

Identification and translation of

DI number in model

Auxiliary routines for search

key creation and manipulation

Driver to translate DI's, set up

core for proper correlation with
AMA data

Create on/off state records for

DI's in model for each BLOCK,

STEP, SUBSTE P

Control input/output of AMA

generated data

Control input/output of translation
between internal codes and model

name s

Check and modify for redundant
failure effect data

Process failure effect records,

creating internal coded forms

and partial search keys

Control storage of multiple
failure effects

STORAGE (Continued)

12) ERRMES

13) MALPRT

14) MALSTR

15) MALTAP

16) MALTEM

17) MALTRS

18) MDIAUX

MDITRS

MDIMSK

MDIREP

MDIADX

MDIUPO

MDIMST

MDISE P

19) MID(_UT

20) NAMMAL

21) NAREPK

22) N(_NPX

23) PR{)MAX

24) RCAII0

51

Error message prints

Creation of failure causes printed

lists and tape

Core storage and control of
failure causes data

Buffer storage for failure causes
lists

Intermediate tape I/(_, preliminary

to final translation of failure cause
lists

Auxiliary routine to control internal

coding of failure causes

Auxiliary routines to control internal

coding and storage for multiple
effects

Create final search keys for
multiple failure effects

Create case storage for original
model name translation

Auxiliary routine to produce

proper packing for RCA 110
failure causes model names

Control of creation of static DI

information records

Auxiliary routine for DION for bit

manipulation

Buffer storage and tape control

for RCAll0-AMA tape

STORAGE (C0ntinucd)

25) RCAPAX Data packer for RCA110 word
for mat

26) RCASWT Control for multiple RCAll0-AMA

tapes

27) RCATAX

RCAOPN,

RCAWRT,

RCAEOF

MALWRT

MALEOF
STARED

STACPY

Input-output IOCS routines for

RCAll0 tapes and static data

28) SDIAUX

SDCNT

SDIMAL

SDIMST

SDUNP

Auxiliary routines for internal

core storage and coding of single
failure effect data

29) SDIOUT Control and arrangement of

single failure effect data for output

30) UNITS File assignments for Fortran

logical units

USE

The progTam operates in three modes, with corresponding changes in tape

requirements. The selection of the operating mode is controlled by the

first data card, the configuration of which is:

Mode 1 :

Col. 1-6

7-12

13-72

contain the word ACTIVE

number of blocks in run

blank

This mode assumes that no static data is to be included on the malfunction

set data tape, so that no merge is attempted.

52

Tape requirements are:

Fortran Logical System Function

ii A(1)

12 A(2)

13 A(3)

14 B(1)

2 UT2

Mode 2:

Col. 1-6

7-12

contain the word STATIC

number of blocks in run

Tape

Index-code Name Dictionary

AMA effect-causes tape

RCA110-Malfunction Sets

RCA110-AMA

Intermediate Tape for temporary

storage of internal malfunction

set codes

This mode is used when a data tape is to be created for later merge with
the RCAll0 tapes.

Tape requirements are:

Fortran Logical System Function Tape

11 A(1) Same

12 A(2) Same

14 B(1) Static AMA data and associated

malfunction sets

15 B (2) Inter mediate

2 UT2 Same

Mode 3:

Col. 1-6

7-12

contain the word MERGE

number of blocks in run

This mode is used to produce RCAll0 tapes with active DI AMA data
and static data combined with malfunction sets.

53

'rape rc(luirenlents arc:

Fortran Logical System Function

11 h(1)

12 h(2)

13 A(3)

14 B(1)

15 B(2)

2 UT2

Tape

Same

Same

Combined malfunction sets and

static data

RCAll0-AMA data for active DI's

Previously created (mode 2)
static data

Same

Following this card an identification card is added, which is transmitted

to the RCAll0 tapes.

Cols. 1-66 Identification

METHOD

The procedure followed by the program is:

1) Set up control parameter for ACTIVE,

2) Read identification card.

3)

4)

5)

6)

7)

STATIC or MERGE runs.

Ready tapes.

Develop and place identifyingcodes on RCAII0 tapes.

Initializemalfunction set core storage, identifyand correlate DI

numbers and codes for test procedure. Ifmerge runs, place static

data on malfunction set tpae.

For BLOCK loop, maintain count of BLOCK and compare with

number of blocks in run to establish exit point.

For each SUBSTEP - the procedure used

a) Create BLOCK, STEP, SUBSTEP identification

54

b) Read effect record and determine DI configuration and

storage positions.

c) Read causes record and store malfunction set or determine

if it has already been processed (Malfunction sets pertain to

entire test procedure) and store the internal set number with

the appropriate effect storage. Translation between the

internal set number and the external number is maintained.

d) Repeat b) & c) until next SUBSTEP or end-of-tape is
encountered.

e) At end-of-substep

(1) Output single DI failure effect, with

malfunction set number translated

(2) Perform reordering cycle for multiple failure

effects, output search keys and translated
malfunction set numbers

(f) Repeat a) to e) until end of tape is encountered.

8) At the end of AMA data input

9)

a) End RCA110-AMA data input

b) Output the collected malfunction sets on a temporary tape

c) Read Index-Code-Model Name Translation tape

d) Re-read the temporary tape, translate the index coding of

the malfunction set to model names and place the sets on

tape and print on system output unit. (If static run, send

to AMA data tape).

e) If merge run, copy malfunction sets from static tape onto

the RCAll0-malfunction set tape.

f) End tape.

End run.

55

APPENDIX A: PROGRAMPROCEDURESAND FLOW CHARTS

Reference to data items are made to AppendixB outlining data storage and the
labeled commons.

The main program driver outline appearsunder method, and the flow charts appear
at the end of this section.

Subroutines are discussed in alphabetical order with an explanation of their options
and techniques and their interrelationship with other programs through labeled
common.

ROUTINES

2. CAUPAX - Two entries

CALL CAUPAK - Pack index codes indicating the causes from /DNSDAT/

into /DNSDAT/under DNSCNT control.

CALL CAUUPK - (Address of malfunction set to be unpacked, address of

array to unpack into)

3. CONVRX - Used as function to connect binary to BCD

.

X : CONVRT (NUM), number is returned in accumulation right-justified

with leading blanks.

DIAUX - Auxiliary DI number processing routines. Three entries:

CALL DITRAN

Words from /NAME/ searching for DI configuration as DIXXXX,

where XXXX is DI number. Number is connected to binary (B17)

and stored in DIBIN of/DICON/. Its word and bit configltration

is computed on the basis of its binary number, assuming that

word 1 of a 63 word profile contains DI's 23-0 in that order, word 2

contains DI's 47-24, etc. This is placed into DICON of /DICON/.

56

°

.

.

CALL DIPART (Address of 63 word profile)

Routine is entered assuming that DICON of /DICON/ has the complete

word configuration (bit and word position) for oring into 63 word

profile.

CALL DISEP - Uses /DICDN/Common

DICC)N contains DI profile configurations and the routine separates

it into word position (B35), stored in DIWRD and bit configuration,
stored in DIBIT

DINX - Processes Index-Name tape for DI's. Routine assumes DI's are the

first names on the tape and the processing is terminated on first
non-DI.

CALL DINT -

Routine passes name through /NAME/to DITRAN and returns the

Binary and profile configurations through/DICe)N/which are then

stored in the single DI section of /AMADAT/. The active DI code

profile is placed in PARDIS of/PARDIS/.

DIOX -

CALL DIC)N - Routine is called upon the reading *STATE record from

failure effect-causes tape.

Since the DI's are assumed to start with index code 1, the program

loops from 1 to the terminating index code retrieving from the on/off

state words in/DNSDAT/the code for each DI through routine
PRC)MAS. If the state is '1' DIPART is used to store the bit into the

proper word of DIONOF of /PARDIS/.

DNSINP

CALL DNSINP - Reads AMA failure effect-causes tape and determines the

type of record.

Data is read into /DNSDAT/

Count in DNSCNT and succeeding data into /DNSDAT/.

Identification of control word (DNSDAT(1)) is placed in AMATYP,
whose values are

1. *TITLE

2. *LIST

3. EFFECT

57

°

.

10.

II.

4. CAUSES

5. EOFEOF

6. *STATE

One terminating error controls the inputting of unidentifiable data.

DT C INX

CALL DTCINP(N) - Reads data from index-name tape.

N = 1 Identify record, setting DTCTYP of

/NAME/to 1, for *NAMES control

2, for *REFERENCE control

3, for no id

N=2 Transmit name or end names flag to calling routine. Name buffers

are read in/DNSDAT/. Names are transferred through

/NAME/with name length (words) in NAMLEN, index code in

INDEX, DTCTYP set to 3, and the name in NAME.

EFFCOX

CALL E FFCOM

Routine works from /FAILDI/common. If a single effect is involved

it checks the appropriate code words of the single DI block of

/AMADAT/based on the NCg)D value. If a multiple effect is involved

it checks through the chain based on the NDI value. If a duplicate

is found in either case IDUP is set negative; otherwise, it is positive.

EFFDEX

CALL EFFDET

Works from /DNSDAT/reducing the EFFECT record to the proper

word configuration for storage into /AMADAT/. No configuration to

be compared in EFFCC)M and stored (SDIMST/MDIMST) is placed in

/FAILDI/ setting NDI to the number of DI's involved, NCOD to the

number of words in the multiple DI configuration (or position in

section 1 of/AMADAT/for single DI), and DICODE with the 63 word

profile configuration. (DI's occupying the same word are used

together and the vector is ordered by word position number).

EFFMUX

CALL EFFMUL - Store multiple DI failure effect configuration. Stores

DICODE into next available words of section 2 of /AMADAT/and

uses MDIUPD to update the chain lists in AMADAT and form the

control configuration word.

58

12. ERRMEX

13.

Error Messageroutine

Call ERRMES(N), whereN is the error encountered. All errors
produce an immediate termination from the program and each
indicates an error in format/loading of either the index code-variable
tape or the AMA tape.

MALPRX

Production of malfunction set tape andhard copyprint.

Routines operate under control of/MALMAS/using MALTEM to
retrieve the decodedmalfunction set number and components, the
configuration 2 setup of/AMADAT/to determine the external names
and lengths and NAREPKto reform the name in RCAll0 format.
Under a static control run it adds 10000to both tape andhard copy
malfunction set number. Under merge control it addsAMA static
search keys and malfunction set data onto the Malfunction Set Tape
through STACPY. The hard copy print is done directly through this
routine.

14. MALSTR - Set up Section 3 of /AMADAT/

15.

CALL MALSTR - malfunction set to be stored is contained in /DNSDAT/

and its length in /MALSET/. It is immediately packed into /DNSDAT/

through CAUPAK routine.

(1) If malfunction set pertains to single DI, it checks directly

against the malfunction set setup for the particular DI on last

substcp. If it has remained the same, no further action;

otherwise (2) is executed.

(2) Search the stored malfunction set up to this point (section 3 of
/AMADAT/). If this has been stored before /MALSET/ is set

to the matching address; if not a new malfunction set is created

and the position information of/MALMAS/is updated.

MALTAX

Controls output to malfunction set tape.

If under control of a static run, data is set to RCAll0-AMA tape.

CALL MALTAP (N, IDT, ICNT)

N is optional entry

59

16.:

N - 1, write the MALFUNCTIONS id for tape's malfunction set data.

N -- 3, store ICNT words of information from IDT into /IRCA/output buffer.

N = 2, initialize buffer storage and execute option N = 3.

N : 4, pack according to RCAll0 format and write information onto tape.

N = 5, end tape with EOF's

Uses MALWRT MALE_bF

RCAWRT RCAE_F

for tape writing

MALTEX

CALL MALTEM(N)

N = 1, under control of/MALMAS/the routine unpacks each

malfunction set (CAUUPK from /AMADAT/into /DNSDAT/and

/MACSET/), and places it as a separate logical record on temporary

tape (UT2). Each set occupies a separate logical record.

N = 2, read a single malfunction set into core (/DNSDAT/, /MALSET/)

17. MALTRX - Two entries

CALL MALTRS (Address of malfunction set control word)

Picks up control word and separates out the word count and external

set value in/MALSET/.

CALL MALCTR

From /MALSET/and/MALMAS/form control word for malfunction

storage. Control word is in /MALSET/.

18. MDIAUX - Seven entries

CALL MDITRS (Address of multiple DI control word)

From storage in section 2 of /AMADAT/ separate out word count,

malfunction set, and control word into /MDIMAL/.

CALL MDIMSK (Configuration for DI, word to place configuration in)

To build up multiple effect but configuration word by oring together

bit patterns of same words of 63 word profiles.

CALL MDIRE P (multiple DI configuration storage)

To create replacement word configuration for search keys. Operates

from /FAILDI/where configuration of last search key on tape is

located and forms the replacement word sequence into/REPLAC/.

6O

(a) Words not directly replaced by the new
multiple DI, have zeroing words created
for them.

(b) Direct replacements and new additions are
stored directly into /REPLAC/.

CALL MDIADX (Address containing a multiple chain reference)

Separatesout the multiple chain address into /MDIMAL/

CALL MDIUPD

From /MDIMAL/ create and store the information necessary to

maintain chain lists of multiple effects of the same level.

CALL MDIMST (Address of multiple DI control word)

From /MALSET/ store malfunction into a multiple DI configuration
control word.

CALL MDISE P (Address of word to decode)

Decode a multiple DI bit-word position control word into /MDIMAL/.

i9. MDIq)UX - Control of output for multiple DI failures.

20.

(1)

(2)

(3)

Control is on worst case first by searching the third words of

section one of/AMADAT/backwards, and using the chain controls

there. First multiple DI under this search is made into the 63 word

profile.

Continuing the search on chain and worst case the replacement

sequences are formed into /REPLAC/and transmitted through

RCAll0 routine.

/FAILDI/is updated after each replacement sequence to show the

current search key which must undergo replacement.

NAMMAX

CALL NAMMAL

Create configuration 2 of/AMADAT/. Using failure candidate

information of the index-variable translation tape, it determines if

name should be stored. If not, the control word is made negative.

Uses DTCINP to read tape and/NAME/to retrieve name and

pertinent information.

61

21. NAREPK

22.

23.

CALL NAREPK (Address of name to pack into RCAll0 format, number
of words to pack}
Packs into /NAME/right justifying the words with four characters

and deleting trailing words that contain only blanks. The number
is modified to the number of words that contain the name after

packing.

NONPX

CALL NONPT - Called during merge run to read and transmit static

AMA data and static codes to malfunction set tape, and/PANDIS/
common.

PRDMAX

X -- PROMAS (INDEX code - 1).

Retrieve the final on/off state of variable with indicated index

code from the STATE record of AMA data tape. Operates on the

packed state list (36 variable/word) using implied position.

Operates from/DNSDAT/placing on/off state in AC.

24, RACllX - General routine to handle writing of RCA110-AMA tape.

25.

CALL RAC 110(N, IADD,NCNT)

N -- 1, read and write RCAll0 control record (from card to tape). If

active run also write on malfunction set tape.

N = 2, Initialize buffer and store NCNT items of data from IADD into

/IRCA/.

N = 3, Perform storage, without initializing if data to be stored exceeds

buffer area of/IRCA/remaining, fill buffer, pack, write and continue

with C¢)NT record.

N = 4, Pack, and write any data remaining in /IRCA/

N = 5, End RCAll0-AMA tape

N = 6, Write RCAll0 tape id (previously read under N = 1) on RCAll0

tape.

RCAPAK

CALL RCAPAK (Buffer, number to pack, number of words after packing)

Each 7090 word upon entrance into this routine is assumed to

contain an RCAll0A character word right-justified. The routine

creates full 6-character 7090 words for direct transmission to tape.

62

26. RCASWX

CALL RCASWT(1)- Write terminating id on old RCAll0-AMA tape and
end tape.

CALL RCASWT(2)- Initialize new RCAll0-AMA tape rewriting ID and
test-block identification.

27. RCATAX - IOCStape control routine

28.

CALL RCAOPN- openRCAII0-AMA tape

CALL RCAWRT- (address of buffer, word count)

CALL RCAEOF - Write end-of-file and set end-of-tape bit

CALL MALWRT - (addressof buffer, word count)

CALL MALEOF - Write end-of-file

CALL STARED- (addressof buffer, words read)

CALL STACPY - Copy static data onto malfunction set tape.

(1) Terminate copy of MALFUNCTIONS
(2) Terminate copy of end-of-file

SDIAUX

CALL SDCNT(ICT) - passthrough section 1 of/AMADAT/ setting ICT
to the number of single DI failures for this substep.

CALL SDIMAL (Address of single DI control word).
From /AMADAT/store malfunction set number associated with

single DI into /DICON/.

CALL SDIMST (Address of single DI control word).
From /MALSET/store address of malfunction set number.

CALL SDUNP (Address of bit-word configuration for DI).

Seperate bit-word configuration into separate word and bit words
in /DICON/.

63

29. SDIOUX

CALL SDIOUT

Operating on section 1 o[/AMADAT/ for single DI effects create

search keys for RCAll0-AMA tape.

(1) Translate malfunction set address to external

number and create control words.

(2) Determine total count of record.

(3) If static run, add 10000 to external

malfunction set numbers.

30. UNITS - File control cards for

(1) INDEX-variable translation tape

(from DNS-AMA-DTC).

(2) AMA data (from AMA program).

64

aead in card &_ _

/--'ii>_N-"X I f_ .."X
[o_. x. Y_" I I F _ I

tape /'

I name & AMA I

effect-cause
[8Z
/read & write x,

BCA110 .)

r No

r

_/

Extr!t &

tore

1

_ St

\

Co y

"====_ Storq

X_2

No

P _

r

L0

22_/

Nn

p

YaB

L

ttatic

Figure A-I. Main Program (i)

65

oo.ot I [

L

p

c veepr
I'

Cox vert

x,22

2 ro

CouJ _s of

* List

r

tar

()

r

__No

Reset

with

+
:ic Yes

RC._ _

Ca_8

rmste ,ffect_ Re

1

INo

_p

Stat/s :ic8

Re,

Mul:

No

_r

Yes

Yes

)

Figure A-2. Main Program (2)

66

Yes

Clear)

Store \

RCA_lo_m\
---C'__,)

reml orary)

, for /

Figure A-3. Main Program (3)

67

I Z

Ac

Pr(

i

x_2

 r:r_ve

Lge

Verify
*NameJ

1

Print

DI

Name

Figure A-4. DINT

68

on

L

Io!
['S

Figure A-5. DION

69

Read ITape

I-IRec)rd

I r

lr

•'lM l
Yfer [

=I

!
I Nlnll.I

ITr'Imllnl_lI

I

l
I 1Reduce

Name

Count

Figure A-6. DTCINX

7O

®

Yes 300

r

)rds

1400

Flag [

MulUple I

<..
ultipl_

_ |

Yes

Yes

!

aJ Indical

! u_:_ _

Figure A-7. EFFCOM

71

NI

Va_

I Set (_

_er

rdl

dnate I
_d

ables

DI) I

Figt_e A-8o EFFDET

72

_ EFFMUL_

1
Pick up

Multiple

(ND1)
i

_ _

I

Figure A-9. EFFMUL

73

Figure A-10. MALPRT

74

No

Yes

No

Yo8

,>
yu _

r

Dvi_

)

Mslfunct. [

1
I=L

Figure A-11. MALSTR

75

(_

p

Data $tore I

J ln/tialile L

q

Buffer

No

Data Write

Term|na_

ape

No

Figure A-12. MALTAP

76

IP

Yes

I R, rind I

Figure A-13. MALTEM

77

E

2O0

Figure A-14. NAMMAL

78

I_°_

I Count

Yes

<
Yes

I'rL%.

1
Ba_ _

I

Index J

1

kal

;0

-- (9

No

p

Lpare J

;,rd J

;lo¢t [

Y_

No

Zero _re
for se

Zero

out 8

8tol

_o

Yeo

ord8

Remainder of

New & Store

Yes

Figure A-15. MOIREP

79

8,q Wordm

Loop Index = 1

1
I Zero Mln

Diff. & Set

Count = I

6OO

slate _ 63

7OO

ford

_k

Ir

I

Yes

add 1 i0 [Num

Yes

Yea

NO

Figure A-16. MDIOUT

8O

_r

Yes

Figure A-17. SDIOUT

81

i = 110 0

Read]

RCA I10

ID

=6

p 200

_: 2400

I Bo_o I
t B_ffer I

I_od_eI
I
T 5oo

Position [

_' 600

Data

700

No

1900

D Ut _ RC._

__2
2000

U_ ate

i

PAK

r

lw

Reduce [

Input

Count

1700

(C,

1800

)

=4

2200

No

=5

2400

i

Figure A-18. RCA110

82

APPENDIX B: DATA MAPS AND STORAGE

I. Data word configurations and referencing mechanisms.

Data from the AMA and DTC-AMA program are condensed into

several types of packed format to facilitate data correlation, search,

and reordering techniques necessary to produce RCAI10 search tapes.

The major storage area for correlation of data is the labeled

common /AMADAT/which has been assigned 17000 decimal locations.

It has two configurations.

/AMADAT/- Configuration 1: Used during processing for

entire test procedure to develop search keys and

a unique malfunction set list. The data block has

three separate sections.

Section h Begins at AMADAT (1). This is an n-entry

table having 3 elements/entry where n is equal to the

number of active DI's in the test procedure. The

configuration of the 3 word entries are (refer to

Figure B-l).

Word 1: DI binary number - malfunction set

reference.

Word 2: DI bit and position configuration.

Word 3: Chaining control for multiple DI failure

effect storage.

Since the DI's are assigned the first index codes by

the preceding programs, information is located in

this table by implied position based on the three word

size).

83

The decrements of words 1 and words 2 of the entries
remain constant for entire run after initial setup.
Words 3 and the addresses of words 1 are changed
during processing of each substep.

Section 2: Begins after the last entry in the above

single DI table. This section is reconstructed for

each substep. Access is gained to it through the word

3 items in each of the above entries. It gives the bit-

word configuration for the multiple DI failure effects

with the correlated malfunction set information. Its

lcngth is variable for each substep and as each new

multiple DI effect is encountered it is stored inthe

next available storage locations (see Figure B-2).

Section 3: The creation of this section begins with the

first substep in the test procedure and is continually

built up during the entire processing. This is the

malfunction set section. The first entry in this section

is at cell 17000 of AMADAT and storage proceeds

backward. Word 1 of each entry is a control word.

Word 2-N are the packed forms of the malfunction sets.

When reference is made to a malfunction set in

sections 1 and 2, the reference is made to the address

in the table. The control word actually contains the

malfunction set number that appears on tape and hard

copy. For example, a DI stored at entry 4 of section

1 has malfunction set 16554. This means that AMADAT

(16554) contains in its decrement the malfunction set

which is actually associated with the DI. (See Figure B-3).

/AMADAT/- Configuration 2: Set up and used at end of processing

of AMA data for complete test procedure.

Purpose is to translate the malfunction sets from the

internal index codes to the external model names.

Core consists of two sections and is set up by the

reading of the index code - name translation tape.

Section 1 begins at AMADAT (1) and reference is made

by implied position of index code. The contents of each
of the cells contains a reference address into the

section indicating the beginning of the external name.

84

The address of the preceding word gives the address of the
preceding name. The subtraction of the two gives the
number of words in the name. A negative word in the
section indicates that the variable was not a failure
candidate; therefore its nameis not stored, and any
reference to it is not translated.

85

Entry (1)
Entry (2)
(AMADAT(4))

Entry (N) w__-
AMADAT (3"N-2)

Word 1

Word 1

Word 2 Word 3

...........Word 2Word 3-_

Word 1: Configuration

A

A - Malfunction set number associated with the single effect
failure on DI indicated in Decrement

D - Binary number for DI, directly related to model name, ie.,

if DI108, Decrement contains binary representation of 108

P - Only sign position is used; if negative, the DI has not been

processed for the current substep

Figure B-1. /AMADAT/ - single DI configuration.

86

Word 2:

S 11 12 35

Word 3:

The word has two sections.

S-11: Indicates that the bit for this DI in its 63word profile,
is containedin the Mth word of the profile.

12-35: Each bit indicates if the DI is turned on in this section.
Storage is basedon the fact that word 1 contains DI's
23-0 in that order, word 2 contains DI's 41-24 etc.

Whenmultiple effect DI failures occur, the effects of
the same level can be identified thru use of word 3.
The iTMentry in the abovetable gives the storage for i.
DI's multiple effect.

lol o ol AI
A - Gives the address (relative to the beginning of AMADAT

of the first word of the first multiple effect information
of the i th level).

D - Decrement gives the last item of the ith level.

Figure B-I. /AMADAT/ - single DI configuration (Continued).

87

Each item is an entry for a unique multiple failure effect for a

substep. It may consist of 2 to 64 words. Each item has a lead
control word.

i

S

S -

n ,,

5: Number of words in profile to express all the
DI's in this effect.

6 - 20: Malfunction set associated with this failure effect.

21- 35: The address of the next storage location containing

an effect failure of the same level. (If 0, this is

the last).

The succeeding words look exactly like the word 2 items of the first

entry, except for minimal storage, there may be more than one bit
turned on.

Example: Multiple effect failure which affects 4 DI's whose external

numbers are 1, 24, 47, 62, has the configuration:

3 I malfunction

1 0

2 10

3

I

set I next 4-level failure
I

010

O1

0--01000000000000000000000

Figure B-2. /AMADAT/multiple DI failure effect configuration.

88

Control Word format:

.a

IiI °. II -. I
A - # of words associated with the malfunction set.

D - The external malfunction set number.

Malfunction Set Configuration Word.

indexiS 17 18

Indexi+ 1

35

Each index code is stored as an 18 bit binary number. The second

index code for a set may be zero.

Example: The malfunction stored at location 16554 is external

set 5 and has 5 components as possible failures, whose

index codes are 100, 103, 1004, 52 and 73

Location:

16551

16552

16553

16554

73 0

1004 52

,,,, , ,

100 103

5 3

The next unique malfunction set encountered is stored starting
in cell 16550.

Figure B-3. Malfunction sets storage.

89

II. Labeled Common

Major communication betweenroutines, tape, and /AMADAT/ is

accomplished through a set of labeled commons with definite functions and •

usages.

1. I/C) Control - Data passing between tape and core goes into/out
of two common sets.

/DNSDAT/AMATYP, DNSCNT, DNSDAT(250)

Data generated by DTC and AMA programs is placed in

this data region.

/IRCA/IRCA(255) data to be transmitted to any RCAl10 tape is

first stored and packed in this common.

2. Data Control Commons for AMADAT

/AMACTR/NSDI - Number of active DI's in procedure.

NMDI- Number of multiple DI's for substep.

NMPOS- Current position (+1) for storage of multiple

DI failure effect storage.

/MALMAS/MLSETS - Number of malfunctions in test procedure.

MLPg)ST - Current position in storage of malfunction
sets.

. Run Control Commons

/MSA/MSA - type run 1, static

2, active

3, merge

/IDDAT/TESTP - test procedure number (BCD)

BLOCK(2) - BLOC and block number (BCD)

STEP - Step (BCD)

9O

8

.o

SBSTE P

/PANDIS/PARDIS(63)

NONPAR(63)

DION_)F (63)

Communication Commons

/FAILDI/NDI -

NCOD -

IDUP -

- Substep (BCD)

- Active DI Codes

- Static DI codes

- On/off states for active DI's

Number of DI's referenced by EFFECT record.

Reference position of single DI effect or

number of words involved in multiple DI effect.

Negative indicates the effecthas been encountered

previously in processing (signal to extend

malfunction set data).

DICODE -

/MDICON/MDIWRD -

MDIMAL -

MDIADD -

MDIPOS -

/MALSET/MALCNT-

MALSET -

MALPOS -

MALCTT -

Multiple DI effect configuration for current

EFFECT record, or replacemen t search key.

Number of words in multiple DI

configuration storage.

Malfunction set address associated with

effect.

Address of multiple effect of same level.

Position in storage of configuration.

Number of words/components associated

with malfunction set currently being

processed.

Address of set or actual external number.

Address of set.

Malfunction set control word.

91

/NAME/DT CTYP

NAMLEN

NAME(8)

INDEX

/DICON/DIBIN

DICON

DIBIT

DIWRD

DIMAL

/RE PLAC/RE PLAC (129)

- type of data from DTC index-variable

generated tape.

If = 1, beginning of names.

= ,,," end-of names

= "_, name.

- number of words in name

- name in either 7090 form or RCAll0 form.

- Internal index code and failure candidate

information.

- corresponding binary number for DI

- total configuration positioning for DI

- Bit configuration

- Word positioning in 63 word profile.

- Malfunction set address associated with

single DI effect.

search key replacement words for

multiple effect failures.

92

I.

II.

III.

Index-variable translation tape is outlined with DNS-AMA-DTC Program

(3843A).

AMA data tape is outlined with AMA program (3998).

RCAll0-AMA tape - RCA 110 format (4 characters per word).

1. Record 1 - RCAll0 Identification (16 words)

2. Record 2 - Word 1

Word 2

Word 3

Word 4

Words 5-67

TEST

Test Number

BLOC

First block in tape

- 63 word profile for active DI's

Words 68-130 - 63 word profile for static DI's

3. Data beginning with record 3 is separated into logical blocks for sub-

step; two types of logical records;

Record 1: Identification and single DI information.

Word 1:

Word 2:

Word 3 •

Word 4:

Word 5:

BLOC

Block number

Step number

Sub- step number

Number of single DI effects in this record.

Words 6-N in groups of two for as many groups as

indicated by word 5.

Word 1 of group - binary representation of DI

Word 2 malfunction set number

93

Record 2: Multiple effect information

Word 1:

Word 2:

MULT

Number of multiple effects in record.

Words 3 - 65:

Word 66

Word 67

Word 1:

Words 2-N:

63 word profile for first multiple effect.

: Associated malfunction sets for above.

: Begins replacement word keys. Each
replacement key has the following format:

Number of replacements to make.

Groups of two words/replacement

First word is position of word to replace.

Secondword is the replacement word.

Word N+h Malfunction set associated with 63-word
profile after replacement. Sequenceis
repeated for as many replacements as
indicated by word 2 (-1).

If either of the two logical records require more
than onephysical record, the first word of the
physical record is CONT and data continues in Word 2.

4. The tape terminates with either

Word 1

Word 2 :

Words 3-6:

Word 1 :

: ENDB

Block number (last in tape)

Fill in

which indicates that another physical tape follows
for the test procedure, or

ENDT

94

6

Word 2 : Test Number

Words 3-6: Fill in

IV. Malfunction set Tape.

which indicates end of test procedure. Tapes
terminate with double end-of-file marks.

V.

1. Record 1 : RCAll0 Identification (16 words)

2. Record 2 : Word 1 : TEST

Word 2 : Test Number

Words 3-6: Fill in

AMA static data in the same form as the two logical

records of III-3 with the four words of identification.

: Words 1-2 : MALFUNCTIONS

Words 3-6: Fill in

Malfunction set data of the form:

One logical record/malfunction set
Word 1 • Set Number

Word 2 : Number of components

Words 3-K: For each component, 6 words (blank

words if name does not fill 6 words)

6. Tape terminates with a double end-of-file.

3. Records 3-N :

4. Record N+I

5. Record N+I to M:

Static data tape is generated by the program under the static option and

contains information of both tapes III and IV. Tape is only used with the

7090 program.

Record 1

Record 2

Records 3-N :

Record N+I

Records N+2-M:

RCAll0 identification.

63 7090 words for static profile.

AMA in form described in III-3.

Same as IV-4.

Same as IV-5.

95

